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We study the quantum Hall effect �QHE� in graphene based on the current injection model, which takes into
account the finite rectangular geometry with source and drain electrodes. In our model, the presence of
disorder, the edge-state picture, extended states, and localized states, which are believed to be indispensable
ingredients in describing the QHE, do not play an important role. Instead the boundary conditions during the
injection into the graphene sheet, which are enforced by the presence of the Ohmic contacts, determine the
current-voltage characteristics.
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Several experiments have studied the quantum Hall effect
�QHE� in graphene.1–3 Recently the observation of the frac-
tional QHE in a suspended high-mobility graphene device
has been reported using a two-terminal measurement
setup.4,5 Surprisingly, four-terminal measurements in small
graphene devices did not reveal the QHE. This observation
has been related to the large influence of the metallic con-
tacts on the formation of the Hall potential in small graphene
flakes, where the current and voltage probes short out the
Hall device.4 On a graphene sheet, the metallic contacts
cover a large area and in principle provide a better-defined
interface compared to Ohmic contacts in conventional semi-
conductors. For the theory of the QHE, the experiments pro-
voke fundamental questions about the role of the metallic
contacts, the correct incorporation of boundary conditions,
and the importance of electron-electron interactions in
graphene. These questions are not addressed in the com-
monly used edge-state and disorder models of the QHE,
which have been proposed for the QHE in graphene and
have been taken over from models for conventional
semiconductors.6 Here, we give further theoretical consider-
ations which stress the importance of boundary effects in
small Hall devices and the role of electron-electron interac-
tions for the integer and fractional QHE. Before we discuss
the boundary effects, let us see why boundary effects are in
general not considered to be part of theories of the QHE.
Two theoretical models are commonly invoked to explain the
IQHE: the disorder model and the edge-state picture.7 The
disorder model adapts a specific distribution of the density of
states �DOS� of a quasi-two-dimensional electron gas in the
presence of a strong perpendicular magnetic field and a ran-
domly fluctuating potential. It is assumed that the DOS splits
into two parts centered around each Landau level: an ex-
tended state band at the center of each Landau level which is
bordered by a broad region of localized states. These results
are obtained by using ensemble averaged Green’s functions
representing an infinite two-dimensional system.8 The QHE
is viewed as a phase transition, which is not related to the
measurement apparatus with its contacts. The second model
of the QHE, the edge-state approach, restricts the two-
dimensional plane by two edges between semi-infinite leads.

The strong magnetic field results in a quasi-one-dimensional
transport along the two edges and thus gives rise to two
oppositely flowing currents. A four-terminal measurement
should guarantee a clean signature of the QHE even in the
presence of disorder within the device.9 The metallic nature
of the Ohmic contacts at the device border and the specific
sample geometry play no special role and are ignored.

In a small graphene device, the use of contrived transla-
tional invariance, which underlies the edge-state and disorder
models, is a strong approximation, and we thus explore con-
ditions under which the QHE can prevail in a finite geom-
etry, where contacts are of a comparable size to the flake.
Already in the classical Hall effect, the boundary conditions
and the finite device geometry are crucial for the calculation
of the self-consistent Hall potential.10–12 For the determina-
tion of the classical Hall potential, the metallic contacts have
to be considered as equipotential surfaces, which enforce
also in the two-dimensional subsystem a uniform potential
underneath the contacts.13 The two-terminal resistance of a
classical Hall device can be readily calculated by the ratio of
the source-drain voltage to the source-drain current. The spe-
cific device geometry and the placement of metallic contacts
do have a strong influence on the Hall potential solution.13

The fundamental reason for the formation of the Hall poten-
tial is the interactions between the electrons in the complete
device, including the contacts, which transform the magnetic
Lorentz force acting on every electron into a global, non-
trivial adjustment of the potential with the emergence of two
hot spots at opposite corners of the device. The interactions
are not present in a Fermi-liquid model of effectively nonin-
teracting electrons,8 and thus these models are not sufficient
to explain the experimental observations of hot spots and the
emergence of the classical Hall field in the QHE.

In the following we describe the injection model of the
QHE in graphene for a two-terminal measurement. We incor-
porate the metallic contacts in the model and thus employ
different boundary conditions than either the edge-state or
disorder models. Our perspective is analogous to the theory
of scanning tunneling microscopy and quantum point
contacts in which electron flow in a restricted region ulti-
mately determines the conductance. The mean-field potential
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�Fig. 1� gives rise to an injection hotspot and an exit hotspot,
where the drift velocity takes on its larges value due to the
fast change in the Hall potential over a small corner region.
Interestingly, images of the Hall potential in GaAs/AlGaAs
heterostructures in Ref. 14 closely resemble Fig. 1. The rate
of electrons entering the device within the hotspot region is
given �as in the edge-state model� by the convolution integral
of the LDOS at the injection points with the group velocity
and the Fermi-Dirac distribution. The main difference to an
edge-state model is the absence of translational invariance
due to the presence of the contacts and the strong bias of the
current injection toward a corner of the device. The resulting
current flows unidirectional diagonally across the device.

From the classical solution alone, no reason for the quan-
tization of the resistivity exists. The quantization requires
study of the relation between the source-drain voltage and
the current in a Hall bar. The self-consistent potential in a
Hall device does depend on the applied voltages, the mag-
netic field, and the geometry of the sample. For rectangular
samples with a length to width aspect ratio L /W�1, the
solution of the Laplace equation for a Hall bar in the pres-
ence of a magnetic field and current leads to a geometry
independent solution with high electric field in two opposite
corners of the device,11 where the Hall potential attains the
universal form

Vcorner�x,y� =
2

�
VSD arctan�y/x� . �1�

Here, VSD denotes the voltage difference between the source
and drain contacts. For the inverse geometrical ratio, L /W
�1 �used for measuring the FQHE in graphene4�, a very
similar solution emerges since the long contact region en-
force the boundary conditions very efficiently. In the follow-
ing, we will use the uniform-map solution as the mean-field
potential, which emerges due to interaction and screening
between the electrons and the positive charges and by con-
sidering the metallic boundary conditions at source and
drain.13 We study the propagation of the effectively noninter-
acting electrons in the mean-field potential. We view our
model as providing a starting point for a more rigorous in-
clusion of interaction effects, already in the nonfractional
QHE. Experimental evidence for the existence and relevance

of the mean-field solution is provided by the absence of the
QHE in a four-terminal measurement in graphene, which has
been attributed to the dominance of the metallic boundary
conditions at the contacts in small devices.4 For low ener-
gies, the nearest-neighbor tight-binding Hamiltonian of
graphene can be expressed by an effective Dirac-type
Hamiltonian.6 Including the minimal coupling of the poten-
tial V�x ,y� and the magnetic field via the vector potential
A=B�−y ,0 ,0� to the kinematic momentum �=p−eA
yields

H = c�
V�x,y�/c �x − i�y 0 0

�x + i�y V�x,y�/c 0 0

0 0 V�x,y�/c �x + i�y

0 0 �x − i�y V�x,y�/c
� .

The four components of the wave function are labeled

��1 ,�2 ,�3 ,�4�= ��A
K ,�B

K ,�A
K� ,�B

K��, where K and K� refer to
the two K points in the first Brillouin zone and the two sub-
lattices A and B, and c�106 m /s denotes a velocity. The
Hamiltonian omits the spin degree of freedom, which is
added later using an effective g-factor. The propagation of
wave packets by numerical methods allows us to accurately
determine the local density of states �LDOS� without the
need to introduce half-infinite leads, which are not compat-
ible with the boundary conditions discussed above. We have
adapted the approach of Ref. 15 to the massless Dirac equa-
tion in graphene using a recursively evaluated polynomial
expansion of the time evolution operator.16 We calculate the
LDOS in a strong magnetic field and for the potential given
in Eq. �1� by tracking the time-dependent autocorrelation
function for several picoseconds. The resulting LDOS is in-
trinsically broadened �by decay in the autocorrelation func-
tion due to flux leaving the injection area under the com-
bined influence of the electric-field potential and the
magnetic field� and shows only extended states which con-
nect one corner of the device with the opposite one. We find
that our numerical results for the LDOS in corner potential
�1� are in excellent agreement with the analytically derived
LDOS in perpendicular and homogeneous electric and mag-
netic fields, provided we choose the homogeneous electric-
field value to match the local potential gradient

E�r� = �−
�Vcorner�x,y�

e
� =

2

�

VSD

r
. �2�

The uniform field case is analytically solvable using the
proper-time approach of Fock.17–20 We construct the LDOS
in the magnetic field ℬ= �0,0 ,B� and the electric field �
= �0,E ,0� from the four scalar components and the eigenen-
ergies

En,px
= c sgn�n��2�n�e�B	1 −

E2

�cB�2
3/4

+
E
Bpx, �3�

given in Landau gauge.21 The spinor eigenfunctions can be
written in terms of oscillator functions

un��� =
e−�2/2Hn���
�2nn!��

,

L

W

ISD, VSD

B

FIG. 1. �Color online� Hall potential obtained by solving the
Laplace equation under the Hall boundary conditions of a steady
current flow in the presence of a strong magnetic field. At the upper
left corner electrons enter the device in a region of high electric
fields and move to the lower right corner.
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� =�e	

�c
�y +

c2pxB − EEn,px

e	2 �, 	 = ��cB�2 − E2.

Using the coefficients

a = −
�cB + 	

�2cB
, b =

E
�2cB

1

�cB + 	
, �4�

with the plane-wave solution in the x-direction, 
px
�x�

=eipxx/� /�2�, we obtain

�1,n,px
�r� = 
px

�x�� e	

�c
�1/4

�sgn�n�au�n���� − bu�n�−1���� ,

�2,n,px
�r� = 
px

�x�� e	

�c
�1/4

�au�n�−1��� − sgn�n�bu�n����� ,

�3,n,px
�r� = �2,n,px

�r�, �4,n,px
�r� = �1,n,px

�r� .

For n=0, the u�n�−1��� terms vanish and the wave functions
acquire an additional normalization factor of �2. We obtain
the LDOS by evaluating

nE�B�r;E� = 
i=1

4


n=−�

� � dpx��i,n,px
�r��2�E − En,px

�

= 
i=1

4


n=−�

� � �En,px

�px
�

px=p

−1

��i,n,p
�r��2,

p =
B
E E − sgn�n�

cB
E

�2�n�e�B	1 −
E2

�cB�2
3/4

.

In the presence of an electric field, the spinor index i can no
longer be used to identify the sublattice. The introduction of
the real spin completes the computation of the LDOS

nE�B
↑↓,A,B�r;E� = nE�B�r;E −

g��B

2
� + nE�B�r;E +

g��B

2
� ,

�5�

where �B denotes the Bohr magneton �which contains the
normal electron mass, not the effective one� and g� is the
effective g factor of the electron. The LDOS shown in Fig. 2
is symmetric with respect to the E=0 value. The centers of
the spin-split LDOS are located at energies En,p=0�

1
2g��B.

For electric fields approaching E /B=c, the harmonic-
oscillator functions are replaced by Airy functions.19 The
transition from a magnetic field dominated LDOS to an
electric-field dominated one for the nonrelativistic case is
also discussed in Ref. 22. The group velocity �En,px

/�px in
the relativistic case is given by E /B and thus unchanged in
the nonrelativistic limit and does not depend on the energy of
the particle. In the injection model, the LDOS in the injec-
tion region together with the group velocity determines the
injected current density. The magnitude of the electric field
in the middle of the device is given by VSD /W and thus a
higher source-drain voltages increases the drift velocity. An
important quantity is the statistical distribution of the
electric-field strengths at the injection sites. Since fully

quantum-mechanical simulations of open quantum systems
with Coulomb interactions are not available, we have to
make assumptions about the magnitude and spatial distribu-
tion of the electric-field values. Also dissipative processes
are expected to occur at the hot spots at the two opposite
corners with the highest probability for electrons to enter and
to leave the device. The superposition of various field values
leads to a suppression of the electric-field induced gaps
within the Landau levels. The current is given by the product
of the group velocity and the LDOS convoluted with the
temperature-dependent Fermi-Dirac distribution f ,

ISD = e�
0

�

dE� drcf�E,EF�
E�rc�

B
nE�B

↑↓,A,B�rc;E� , �6�

where the magnitude of the electric field in the injection
region near the hot spot depends on the value of the source-
drain voltage drop occurring in this corner, given by Eq. �2�.
Thus we obtain a voltage dependent group velocity and
broadening of the LDOS, depending on the injection points
at rc. For a theoretical simulation of the QHE in constant
current mode, we have to iterate Eq. �6� with different values
of VSD until we match the desired total current. In Fig. 3 we
show the current dependence of the Hall curves for a mag-
netic field of B=10 T as a function of Fermi energy, which
can be adjusted experimentally by varying the voltage of a
back gate. The figures are calculated under the assumption
that a single electric-field strength near the hot spot domi-
nates the current, which is 50 times stronger than the linear
Hall field in the middle of the device. The increase in the
local-electric field at the injection region of a factor 50 is an
estimate based on the extension of observed hot spots in
GaAs/AlGaAs heterostructues.14 For currents in the order of
10 �A a strong modulation of the Landau levels is visible
which develop a very asymmetric shape and a gap near the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Energy E [c
√

2eh̄B
[
1 − E2

(cB)2

]3/4

]

ν = 2

ν = 6

ν = 10

FIG. 2. �Color online� Overview of the LDOS with an effective
g factor g�=2 for the electric field E=200 kV /m and the magnetic
field B=15 T as a function of the energy in Eq. �5�. The red �right
hatched� and blue �left hatched� areas are the contributions from the
spin-up and spin-down components. Note the modulation within
each spin-split component, which is caused by the electric field and
increases for higher levels. The black solid line shows �xy = h

e2�
. The

energy is given in units of 141 meV.
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filling factors �=4,8 ,12, . . ., where the resistivity curves in-
tersect at current independent points between two adjacent
plateaus. These modulations and gaps are not caused by in-
teractions but by the peculiar shape of the LDOS in graphene
in the current injecting corner. We expect that these hot-spot
induced gaps are reduced by the simultaneous emission from

the other injection points with lower electric-field values.
In conclusion, we have calculated the source-drain-

voltage-current relation of a finite graphene device in strong
magnetic fields. Our theory of the QHE in graphene shows a
rich substructure and modulation of Landau levels due to the
presence of hot spots in the device. The modulation in
graphene is different compared to other semiconductors due
to the perfect alignment of the nth and �n−1�th Landau level
around the same energy. The experimental observation of
current induced structures can clarify the electronic transport
paths in graphene and pin down the region where electrons
enter a device in the presence of high magnetic fields. The
presence of disorder is not a requirement for the existence of
the QHE. Puddles of localized electrons away from the cur-
rent injecting corner are not able to stop the injection process
and thus may only deform the pathways of the electrons
through the sample, which affect the longitudinal voltage
drop, but not directly the Hall conductivity.
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FIG. 3. �Color online� Hall resistivity as function of Fermi en-
ergy. Shown are the filling factors �=2–10 at a temperature of T
=5 K for two dc currents ISD=1 �A and ISD=10 �A.
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